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ABSTRACT

Two new time-domain sensitivity measures, integral sensitivity
and peak sensitivity, are defined in terms of the sensitivity function.
A relation between integral sensitivity and classical frequency-domain
sensitivity is established, and the generation of classical sensitivities,
sensitivity functions, peak sensitivity, and integral sensitivity is

discussed. Classical sensitivity is employed in & comparison of the sen-

sitivity properties of linear control systems designed by two methods:

S .

—\/\M“’/\/\\
series compensation and state-variablé feédback. Tt is shown that under

’\_,\/

o e
e

e T ) : A /\//\'/\\/—\’_\—/
certaln conditionsthe system designed by feeding back all of the state

variables may be expected to be less sensitive than the series compensated
system. A modification of state-variable feedback, the H-equivalent system,
is considered in further attempt to reduce sensitivity to parameter changes.

Several examples are presented to illustrate the theory.




CHAPTER T

INTRODUCTION

The need to consider the sensitivity properties of a control system
arises from two general sources. While the system 1s in operation,
there may be variations in components because of aging, environmental
changes, etc., Secondly, it may be necessary to design a controller for
a system without having an accurate knowledge of the parameters of the
fixed plant. These problems have motivated a search for design methods
that yield systems for which the performance is insensitive to variations
in system parameters.

In order to evaluate these design methods, 1t is necessary to
have quantitative sensitivity measures, many of which have been defined
in the literature. The first definition of "classical sensitivity" was
given in early work on the theory of feedback systems by Bode (1945).
In fact, reduction of the effects of component variations on system
performance was a primary motivation for the use of feedback. Varia-
tions of Bode's frequency domain definition of sensitivity have been
used in further studies by Horowitz (1963) and Haddad and Truxal (1964).
Kalman (1964) has used classical sensitivity to demonstrate a link
between the theory of optimal control and classical control theory.
Sensitivity in terms of pole and zero variations is discussed by Horowitz
(1963), and has been used in the analysis of high order systems by

Van Ness, et. al. (1965). A time-domain measure of sensitivity and its



application to control systems analysis is discussed by Tomovic (1964).
This thesis is an attempt to study the [sensitivity properties
of a class of linear systems. The systems to be considered are non-

T —

time varying and have a single input R(s) and a single output Y(s).
N ——

A vector differential equation of the form

x(t) = A x(t) + b r(t) (1.1)

may be used to characterize the dynamics of the system. However, the
sensiéivity properties of a system depend on its topology, which is
not described by Eq. (1.1).l Therefore, the systems to be studied are
defined in terms of block diagrams.

The problem to be solved is of the following form. A given
fixed plant, which is unalterable internally, is specified by a transfer
function Gp(s). It is assumed that the state variables of Gp(s) are
measurable., Also specified is a closed-loop transfer function, Y(s)/
R(8) = W(s), for the desired system. The general problem is to find a
method for compensating the plant so as to yield W(s) in such a way that
the sensitivity of the system performance wi;h regspect to changes in
the parameters of the syétem is a minimum.

The design procedure to be investigated here is the method of
obtaining W(s) by feeding back all of the state variables. A detailed
discussion of this method is presented by Schultz and Melsa (1967).
Here, the state-~variable feedback system is8 compared to the system which
realizes the same W(s) by series compensation. The use of series compen-

sation to realize a sgpecific W(s) is known as the Guillemin-Truxal



method, which is described in Chapter 5 of Truxal (1955). Thus, given
a fixed plant Gp(s) any specified closed-loop tramsfer function W(s)
may be obtained by either of the two methods. In this work the sensi-
tivity properties of the resulting systems are examined. An extension
of the state-variable feedback design 13 also investigated.

It 1s desired to find a general method of synthesis which yields
W(s) with minimum sensitivity of the system performance with respect to
parameter variations. Hence, a single measure of sensitivity and a
single criterion of system performance must be defined. Then the solu-
tion based strictly on these definitions may be sougﬁt. However, such a
procedure may lead to solutions which are impractical. To {illustrate, a
system may be designed such that the sengitivity of its performance with
respect to a differential change in some parameter is a minimum (in some
sense). But a finite change in the same parameter may result in instabi-
lity. Such a case 13 demonstrated in Chapter V. Therefore, while attemp-
ting to find a design method based on precise definitions of sensitivity
and performance criteria, the engineer must keep in mind an overall view
of the nature of the system.

In Chapter II several definitions of sensitivity from the literature
are discussed, and two new gsensitivity measures are defined. The
generation of sensitivity measures is the subject of Chapter ITII. Chapter
IV is a general discussion of the sensitivity properties of systems designed
by cascade compensation, and by feeding back the state variables. 1In Chapter
V several numerical examples are presented, and some conclusions are

stated in Chapter VI.



It is found that a system designed by feeding back all of the
state variables may be expected to be less sensitive to parameter

changes than the seriles compensated system.



CHAPTER IT

SENSITIVITY MEASURES

In this chapter several sensitivity measures are discussed in
relation to the type of systems to be studied here. A sensitivity
measure should incorporate two features. It should be mathematically
tractable, in order that its usefulness is not limited by computational
problems. Also, it must be physically meaningful in relation to the per-
formance of the system. 1In particular, the sensitivity measure should
relate to the performance criteria which are used to design the system,
The systems to be discussed in this thesis are designed for a specific
closed-loop transfer function, W(s) = Y(s)/R(s). Since W(s) is usually
chosen so as to yield a desired response to a step input, a meaningful
sensitivity measure for this type of system should indicate how the

step response is affected by parameter changes.

2.1 Root Sensitivity

A sensitivity measure which has been used frequently in the analysis
of control systems and circuits is root sensitivity. This measure
estimates the effect of a change in a‘system parameter on the positions
of the poles of the closed-loop gystem., The interpretation of the results
of an analysis using root sensitivity depends on the correspondence
between closed-loop pole locations and the characteristics of the tran-
sient response. The control engineer gains by experience an intuitive

notion of this correspondence, but for a complicated system, where many



pole locations change with variations in a parameter, this correspon-~
dence may not be clear. Also, except in the simplest cases, the rela-
tion between the changes in pole locations and transient response,
which one can obtain by inspection, is only qualitative. For these

reasons root sensitivity was not used for the problems considered here.

2.2 Classical Sensitivity

The expression given here for classical sensitivity is the
definition from Truxal (1955). The (classical) sensitivity of a

function T(s, A) with respect to a parameter A may be defined as:

T T
Sk SA (s)

- d &nT
d 2n) (2.1)

_ d1/T

/A
41 (2.2)

X
«
T dA

For Y(s)/R(8) = W(s), Sz (s) is a measure of the percentage change in W(s)

for a percentage change in a parameter A. A physical interpretation

W
A

However, it is shown that S? (jw) 1is related to a sensitivity measure

of Sz 1s difficult, because S, 1is a function of the complex variable s.
which is used extensively in this study. Therefore, some formulas for
clasgical sensitivity are presented here.

Consider the single-loop feedback system of Flg. 2,1, The
(classical) sensitivity of the closed-loop transfer function with respect

to G 1is:



+ Y(s)
G(s)

H(s)

Figure 2.1 A single-loop control gystem,

W(s, A+AX )

W (s,))

Figure 2.2 An experiment to illustrate
the definition of the sensitivity function.



G
W dG
=& d | _G
W dG |1 + GH
o 1
1+GH
.1
~ GH if IGHl >>

1.

(2.3)

This result expresses the well-known fact that increasing the loop

gain of a system reduces the effects of variations of elements in the

forward

control theory and the theory of optimal control.

path. This fact provides a precise link between classical

For the system of

Fig. 2.1, the quantity F(s) = 1 + GH(s) 1is called the return differ-

ence., Kalman (1964) has shown that the control law for a wide class

of linear systems is optimal if and only if |[F(jw)] > 1 for all real

w. Thus, it might be said that an optimal system is an insensitive

system,

and vice versa.

The sensitivity of W(s) with respect to H(s) is:

W
SH

= 2 dW
W dH

S
1+ GH

(2.4)

It is seen that for a loop gain much greater than unity component

variations in the feedback path are undiminished in their effect on

W(s).

Suppose A\ 1s a parameter which appears only in a component

block G.



> =

Consider the function:

K(s+z. ) (s+2,)...(s+z )
a(s) = 1 2 m
(s+p;) (84p,) .« . (stp )
Then Sg = 1
G “Py

S B ]
py s +py

zi 8 + zi

It i3 clear from the above calculations that classical sensi-
tivities are relatively easy to evaluate.
the fact that they are related to another sensitivity measure which
is closely connected with the step response of the system, makes

classical sensitivity a useful tool in the analysis to follow.

2.3 Sensitivity -Functions

This feature, along with

The sensitivity measure discussed here is defined by Tomovic
(1964). Let X be a system parameter with a nominal value A,.
y(t, ) be the response of the system to a step input.

change in the parameter ) the step response may be expanded in a

Taylor series.

Then for a

(2.5)

(2.6)

(2.7)
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2 2
gty A a0 =y(e, Ay + LE D oy dy(E DAY,
) o dx dx 2 2!
A A
0 o
dv(t, X
D » which is a function of time, is a linear approximation of
X
o)

the change in y(t, 1), at the time t, resulting from a change AX in the
parameter A from its nominal value Ao. Usually it is desired to have
an estimate of the change in y(t, 1) for a percentage change in A.
Therefore, the sensitivity of the system with respect to the parameter

A is defined as:

o dy(t, A
uy (t) ax (2.8)
A

uk(t) is called the sensitivity function for the parameter A. The

physical meaning of ux(t) may become more concrete if the situation
pictured in Fig. 2.2 is considered. A step input is applied simul-
taneously to two systems. In one system the parameter under consid-
eration has a value A, while in the other system the parameter has a

value A + AA. The difference between the outputs of the systems is:

Ay = y(t, X + AX) - y(t, ))

Division by the normalized change in the parameter yields:

oy _ y(t, A+ AN - y(t, M)
AX/X AX/X

Under the agsumption that the following limit exists,
lim
Ar=0 Z%%I - dilxx =y (B
A gsimple example illustrates the interpretation of sengitivity

functions. Fig. 2.3 shows the block diagram for a control system for



11

w o | 5 )
A s+py s
r
k2
"
Figure 2.3 A second order control system,
8 1
+ — =
R(___’<s) —= s+l s Y(s)
y
»375
{&

Figure 2.4 A second order control system.
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which W(s) 1s required to be:
W(s) = 5 8

8 + 43 + 8

Fig. 2.4 is one possible realization of W(s8). The response (y(t)) of

this system for a step input and the sensitivity functions (uK (t),
1

uy (t), uy (t)) are plotted in Fig. 2.5. Since the sensitivity
2 2

functions approach zero as t+ =, Kl’ Kz, and k2 have no effect on

the final value of y(t). TFrom the fact that the magnitudes of w, )
1
and uy (t) are largest during the time when the output is rising
2

toward its final value, it may be concluded that Kl and K2 affect

the rise time of the gystem, with an increase in K. or K2 decreasing

1
the rise time, Also, a change in K2 has a smaller effect on the

response than does a change in Kl. The curve of uy (t) indicates that kz
2

affects the response in the reglon close to its peak value, so
that an increase in k2 decreases the overshoot. This behavior

should be expected, since k, is the coefficient of rate feedback.

2
Fig. 2.6 shows the actual affects of 207 increases in K1 and k2 for
the particular system of Fig. 2.4. From this figure it is seen that

the qualitative effects of changes in Kl and k2 are as predicted.



13

0°¢

*a7duexa ay3 103 suofidounjy AITATIFSULS G°7 2aIndfg

— w— m— — — —

ST -

YA

GL*®

0°1




14

osuodsai do3s syl uo suojleyiea isjsueied jo £309339 9yl 9°z °2anlIg

0°¢ 0°2 0°1

-« T T ] 0
-1 §¢°
-4 ¢
- 6L

sanTeA i1ajsweaed TeuTwoN
Nx U 98BIIOUT Y07
— a— — — — — — — — — — — — — — S— —— OCH
T

M Ul @seaidur Y0z 1 EDYS




15

2.4 Peak Sensitivity and Integral Sensitivity

The sensitivity functions have the desirable features of relating

directly to transient response and indicating just how much each

part of the response is affected by the parameters. However, this
wealth of information is not in a compact form, since the sensitivity
functions are functions of time. In an attempt to find a measure of
sensitivity which relates directly to fransient regsponse and yet is
more concise in form, two new sensitivity measures are defined here.

The peak sensitivity of the system with respect to a parameter

is defined as

* -
u¥ uy (T) . (2.9)
where T = the value of t such that|ux (t)] 1s a maximum. u, gives an

estimate of the maximum change in the response (at time T) for a + 17

change in X.

The integral sensitivity of the system with respect to a parameter

A 1s defined as

* 2
SA = fo uy (t) dt (2.10)

when this integral exists. Unless A is a parameter affecting the final
value of y(t), uy (t) approaches zero as t+», It is shown in Chapter
I1I that uy (t) is the response of a linear system. Then if uy ()= 0
as t + , it approaches zero in an exponential fashion. In such a case
ui(t) is the sum of decaying exponentials, so that the above integral
does exist. Therefore, it 1s concluded that S, exists if ) does not

A
affect the final value of y(t). If the final value of y(t) does depend
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on A, the integral sensitivity with respect to X is not defined. The
sensitivity of the system with respect to such a parameter might be
characterized by the peak sensitivity and the final value of the
sensitivity function uA(t).

The definition given for integral sensitivity was chosen as a
measure of the overall influence of a parameter A on the step response.
For the integrand, ui(t) was preferred over qu(t)l for two reasons.
The squared quantity weights large values of u (t) more heavily than
small values. Algo, the integrand ui(t) allows the use of Parseval's
Theorem in the evaluation of the integral. This is discussed in the
next chapter.

Clearly, in obtaining more concise sensitivity measures, some
information as to the way in which A affects the response is lost.
The sensitivity functions are useful in particular cases where this

information is important,



CHAPTER IIX

GENERATION OF SENSITIVITY MEASURES

The purpose of this chapter is to show how sensitivity
functions, peak sensitivities, and integral sensitivities may be
found. To generate these sensitivity measures, an analog or digital
computer 1s required, while classical sensitivities can be found
eagsily from a block diagram of the system. It is shown that classical
sengitivity and integral sensitivity are connected by a relationship
which enables one to predict the nature of sensitivity functions and

integral sensitivity from a knowledge of classical sensitivity.

3.1 The Relation between SA and Sg.

From the definition of the sensitivity function,

u,(t) = '%\(Q
Y
- - d¥(s)
L{uk(t)} UA(S) i)
A
SR

for R(s8) not a function of A. Since the sensitivity functions are de-

fined in Chapter II for a step input, R(s) ='§. Then,

17
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= 1 du(s) W(s)
Un(8) = 5 A/ W(a)

-1 A_dW(s)
8 W(s) W(s) dx

_1 W (3.1)
s W(s) Sk

For s = ju,

U, (Jw) | = l‘i&u]il sy Gwl.

® 2
SA fo uA(t) dt

Now,

=/ ui(t) dt
since u(t) = 0 for t< 0. Then using Parseval's Theoremn,

Sy = 757 {j: U(s) U(-s) ds (3.2)

=50 £ 106w |

© 2
=5 Jﬂi‘gﬂ— s} (jw)lz dw (3.3)
W

Eq. (3.3) shows the relation between integral sensitivity SA and

classical sensitivity Sw Clearly, reducing |S¥(jw)| reduces S

A" A.

In this thesis the systems to be studied have identical trang-
fer functions W(s), but different classical sensitivities with respect
to the same parameter. Then from Eq. (3.3) it is seen that the differ-

ences between integral sensitivities for such systems are determined by

differences 'in their classical sensitivities. This link between
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classical and integral sgnsitivity is important, because classical
sensitivities are easily found from a block diagram of the system,

while the generation of S, requires a computer. For thig reason it

A
is desirable to have a method for finding classical sensitivities.

3.2 Generation of Classical Sensitivities

The procedure given here for finding classical sensitivities
from the system block diagram is essentially the same as the method
described by Tomovic (1964). The block diagram of a control system
is shown in Fig. 3.1, where the component blocks of particular interest
are Gi(s) and H1(8)° For the case where all of the G,(s) are first

3

order and the Hj(s) = k, (constants), Fig. 3.1 is a block diagram

3
of a system where all of the state variables are fed back. However,
the expressions derived here for classical sensitivities are valid

for G,(s) and H,(8) of any order. Fig. 3.2 shows a reduction of

k| h|
the block diagram for the purpose of calculating Sz and Sg . L(s) 1s
‘ i i
the transfer function from E ,to B,. (These variables are defined in

i i
Fig. 3.1.) M(s) represents the sum of the feedback through the paths

containing H,, H when these paths are referred to the

1’ 72 Hi-l
output. N(s) is the transfer function from the output of Gi to the

system output. Thege quantities are defined by the following equations.

n
I
4 B, (s) G
L(s) = = J=itl § (3.4)
Ej& ;401 a1 oc)

J=1 41
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Y(s)

Figure 3.2 A reduced block diagram.

21



N(s) = I G
g=1 9

Then,

G,LN

Y(8) - - i
R(s) ~ W) = 1% G,L [H, + ]

GiLN

1+ GiLF

where F = H1 + NM.

Then the sensitivity of W(s) with respect to Gi(s) is

v %) auce)

S =
Gi w(s) dGi(s)
Gi 1+ GiLF - GiLF
=% N 2
[1+ GiLF]
-1
1+ GiLF

The transfer function from the Iinput to Ei(s) is:

E,(s) 1

R(s) 1+ G LN M+ Hi]

N

1
1+ GiL [Hi + NM]

22

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)
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Thus, the classical sensitivity of the system with respect to
Gi(s) is just the transfer function from the input to Ei(s). The

sengitivity of W(s) with respect to Hi(s) is:

w506 e

H, " W(s) dH, (s)

S

In order to simplify calculations, let G(s) be defined as:

LG,
G(s) = T3 LG M
N
Then,W(8) = N G
’ 1+ GH,
H
e [
1 (1+ GH)
%
1+ GHi
) D, (8)
R(s) (3.19)

The classical sensitivity of the system with respect to Hi(s) is the
transfer function from the input to Di(8)°

Eqs. (3.9) and (3.10) for classical sensitivities only apply to
the system of Fig. 3.1. However, the series compensated system 1is
easily treated as a special case. A unity feedback system with a fixed
plant Gp(s) and a series compensator Gc(s) is shown in Fig. 3.3. Since
there is no feedback from the output of Gc(s), the transfer functions

in the forward path may be combined. Let G,(s) = G_(s) CP(S)- Then the



E. (s

GC(S)

Gp(S)

Y(s8)

Dl(s)

Figure 3.3 A series compensated system.

24
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series compensated system of Fig. 3.3 is a special case of the system
of Fig. 3.1, with only one block in the forward path (G1<S)) and with
Hl(s) = 1, Now, from Eqa. (3.9) and (3.10),

w  E(®) 1

G1 = R(8) 1+ Gl(s)

S

1
1+ Gc(s)Gp(s)

v Dl(s) _ —Gl(s)
H R(s) 1+ Gl(s)

—Gc(s) qp(s)
"1+ Gc(s) Gp(s)

For system configurations which are not special cases of the
diagram in Fig. 3.1, the classical sensitivities can be found by direct

application of the definition (Eq. (2.2)).
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3.3 Generation of Sensitivity Functions, Peak Sensitivity, and

Integral Sengitivity.

In Section 3.1 SA was expressed as an integral in the form of
Eq. (3.2). For the case where U(s) is a ratio of polynomials,
the integral has been tabulated as a function of the coefficients of
the polynomials (Newton, et.al. (1957)). However, the expressions for
this integral become cumbersome rapidly as the order of U(s) increases.
Since for an nth order system the order of U(s) is 2n, the evaluation
of SA by Eq. (3.2) 1is impractical.

The method presented in Section 3.2 for finding classical
sensitivities and Eq. (3.1) for UA(S) indicate how sensitivity functions

may be generated. Eq. (3.1) is repeated here:
1 W
UA<S) o W(s) SA

If o is a parameter only of Gi(s), then

G

1 Wi
Ua(s) . W(s) SGi Sa (3.11)
If B 1s a parameter only of Hi(s), then
H
1 W i
UB(s) =3 W(s) Sy Sg (3.12)

i
The generation of Ua(s) and UB(s) is shown in Fig. 3.4. A step input
is applied to a system with the transfer function W(s). The output 1s
applied to the input of a second system (with transfer function W(s))

whose sensitivity 1s to be studied.
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B(s) D) W .
Y(s) and §?;7~ provide the terms SG and SH
G gt 1

in Egs. (3.11) and (3.12). The blocks labeled Sa1 and SBi provide

The transfer functions

the corresponding terms in Eqs. (3.11) and (3.12) to complete the
generation of Ua(s) and UB(S). For the cases where the parameters

G H
a and B are gains, poles, or zeros, Sa and S are simple functions,

B

as shown in Chapter II. Finally, the blocks labeled I. S. (Integral
Squared) square the time functions ua(t) and uB(t) and integrate to
yield S and SB' (The generation of the sensitivity functions is
carried out in the time domain by a computer, but for convenience,
the method is discussed using the transformed variables.)

For the example systems of Chapter V, a digital computer is
used to generate the sensitivity functions, peak sensitivities, and
integral sensitivities. For the 5th order system of Example 3 in
Chapter V, the sensitivities with respect to eight parameters are
found. The generation of the sensitivity functioné, peak sensitivi-~
ties, and integral sensitivities for each parameter leads to a system
of equations of order 23. The computer time required for the solution
is approximately 4 minutes.

It has been pointed out that the evaluation of SA from tables
of the integral (Eq. (3.2)) is usually impractical. However, for the
third order system of Example 1 in Chapter V, the integral sensitivities
were found by this method. These results were compared to those obtained
from a digital computer program, which approximately solves the differ-

ential equations for the integral sensitivities. The values obtained

by the two methods agreed to within 0.3%.



CHAPTER IV

SENSITIVITY AND STATE-VARIABLE FEEDBACK

The sensitivity measures which have been discussed are used
in this chapter and in Chapter V to study the sensitivity of some
linear control systems. In the present chapter a slightly general
discussion of the problem is attempted. Because sensitivity analysis
in terms of sensitivity functions and integral sensitivity is prac-
tically limited to specific cases, much use 1s made of classical

sensitivity.

4.1 Series Compensation and State Variable Feedback

It 1s assumed that a given fixed plant is to be compensated in
order to yileld a desired closed-loop response. Figs. 4.1 and 4.2 indi-
cate two approaches which may ge used to solve the problem. The fixed
plant is of order m, and has a transfer function

Gp(s) - Gl(s)Gz(s)...Gm(s)

where the Gi(s) are first order. 1In Fig. 4.1 a cascade compensator
Gc(s) has been used to realize the required W(s), which 1s of order n.

GG
S -6 -

Gc(s) may be found by the Guillemin-Truxal method discussed in Truxal
(1955). 1In Fig. 4.2 W(s) is obtained by feeding back the state vari-

ables of the fixed plant and, if necessary, by adding first order series

29
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R(s) G G Y(s)

Gp(s) - Gl(s)Gz(s)...Gm(s) {order m)
Geq(s) = Gc(s)Gp(s) (order n) ‘

Figure 4.1 The series compensated system.
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compensating elements, whose state variables are also fed back. This
method of design is described in detail by Schultz and Melsa (1967).

The resulting system has the same nth order, closed-loop transfer
function W(s) as the series compensated system. The following expression

for W(s) of the state-variable feedback system is derived in the

Appendix.
GG.C.G
172 n
W(g) = (4.2)
1+ leIGZ"'Gn + k2G2...Gn+._:+knGn
n
Il
G
- i =1 "1 (4.3)

tzl n
1+ K, T ¢
2=1[2j=2 3]
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4.2 Sensitivities

The gensitivities of the two systems with respect to parameters
in both the forward paths and the feedback paths are studied in this
section. However, more attention is focused on the parameters in the
forward path, expecially those in the fixed plant. This is because
in most cases the designer is able to select compensating components
with production tolerences which are small enough to avoid problems of
sensitivity with respect to these components. Sensitivities with
regspect to the compensating elements should still be checked, however,
in order to avoid a situation where the tolerances required are impractical.

Consider the state variable feedback system. Using Eq. (3.9),

- E,(s)

6, " R(s)

It is shown in the Appendix that

n i i [ n
1+ k il G
I olyy TG
Sw - j=1 2 i+ 1 (4.4)

G1 g n
1+ k il G
j-l[jz-j “]

S

For example in a third order system these sensitivities are:

1 +%k,G,G, + k,G

W 2003 + k4Gq

S = (4.5a)
G, © T+ K.60,C, + K,G,C, + kG,

M- e (4.5b)
G, " T+ k;6,6,0, + k,G,6, + k.G,

W L (4.5¢)

G3 1+ lelGZGB + k2G2G3 + k3G3
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The denominators of Sg do not depend on i, so the magnitudes of the
i
W

SG may be compared by examining the numerators. TFor this discussion

i
let
R
i
A; (Ju)
- —EYEZY for s = jw.

For frequencies less than the system bandwidth, and if all k,> 0, it

i
may be expected that IAi(jw)| is smaller for larger values of 1. 1In

this case, from the discussion of the relation between classical sen-

sitivity and integral sensitivity, it is expected that the SG are
i

smaller for larger values of i. Intuitively, one might predict this
behavior from noticing that the Gi(s) are more imbedded in feedback
loops for larger values of 1. For all of the examples studied with

k1 >0, 1t was found that SG decreased as 1 increased. However, it
i

is not always true that all of the ki are positive. If one or more
of the feedback coefficients are negative, it may be expected that

for some value of 1, S >SS, . An example of this situation is
6t +1 G

shown in Chapter V.

Consider now the geries compensated system, Let Geq(s) =
Gc(s) Gp(s). Then using the fact that the sensitivities for all blocks in
cascade are equal,

W W W Egsz
SG SG SG R(s) for all 1.
eq c i
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Since the closed-loop transfer functions for the two systems are the

same,

W E(s) P18 W

= = = §
Geq R(s) R(s) G

!
where El(s) is defined in Fig. 4.2, and Sg refers to the state feed-
1

back system. Thus, the sensitivity of W(s) with respect to any block
in the forward path of the series compensated system is equal to the

sensitivity of W(s) with respect to G, in the system using state-

1

variable feedback. Then for most cases Sg is smaller for the
i

state variable feedback system, since SZ decreases as 1 increases
i

in that system.
The sensitivities of the state-variable feedback system with
respect to the feedback coefficients, ki’ are now considered. 1In the

Appendix it is shown that

n
-k bid G
oo ti=3 (4.6)
ki % n .
1+ k )it G
j=1[j1=j “]
n
= i T . Gy
= 5 » 4.7)

For the case of a third order system these sensitivities are:

~k.G,G,G

B 1 L A
kl B(s)
“61%% _ -x(s) (4.8a)

B(s) R(s)
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for kl =1
K -k,6)Gq -
k2 B(s) (4.8b)
k.G
W 303
Sk3 B(s) ° (4.8¢)

For the series compensated system let k = 1 be the unity gain of the

gsingle feedback path. Then,

SW - _GcG - ~Y(s8)
k“T+Ge " R
- sﬂ for k, = 1
L 1

Thus, the sensitivity of the state-variable feedback system with

respect to the unity feedback gain from the output is the same as for

the serles compensated system. The relative magnitudes of Sz (Jw,

i
for different values of i, depend on the magnitudes of the Gi (Jw.

If lGi(ju9|> 1 and if the k, are of the same order of magnitude, it

i

would appear that |Sw (jubl decreases as 1 increases. 1In such cases

k1

the state-variable feedback system would not be more sensitive with
respect to changes in the feedback coefficients than would the series
compensated sytem with respect to a change in the single unity feed-

back gain..

4.3 Restrictions Imposed by the Fixed Plant and the Closed-Loop

Transfer Function.

From the comparisons made above between the series compensated

system and the state-variable feedback system, it is seen that
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decreased sensitivity may be obtained by a change in the system
configuration. However, it appears that the minimum sensitivity

that can be achieved is limited by the fact that the fixed plant

and the closed-loop response are specified. An example which
illustrates this is the system of Fig. 4.3. The closed loop transfer
function is

K KoK
3

7
87 + (py + Py + kyKy)s™ + (pypy + pykaKy + kyKK)s + KKKy

W(s) =

1f k2 and k3 are positive, it may be expected that G3 is the least

gsensitive block. From Eq. (4.5c),

s(s + p,) (s+p,)
< 8 +p,) (stp,

3
3 8 + (p2 + P,y + k3K3)s2 + (p2p3 + p2k3K3 + k2K2K3)8 + K1K2K3

W
G

The examples of Chapter V show that the low frequency asymptote of

Sy i1s important in determining SA' Here, for small values of w,

W . PoPg®
ISG (jw)l - K.K.K
3 17273

The product PyP5 18 determined by the fixed plant, while the product
KleK3 18 specified by the closed-loop transfer function. Decreasing
Sz by specifying a new closed loop response with a larger constant
term, K1K2K3, is usually not feasible, since this constant term

determines the loop gain of the system; the loop gain is usually



+

- s+p3 s+pP2

= Y(s)

Figure 4.3 A third order control system,

38
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restricted so that the system remains in a linear region of operation
for some expected input.

The dependence of sensitivity on the fixed plant and the
closed-loop transfer function 18 currently being investigated by

Dial (1967).
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4.4 Modifications of State Variable Feedback

Earlier in this chapter it was found that, under certain con-
ditions, one would expect the system using state-variable feedback to
be the least sensitive to the Gi(s) nearest the input. In an attempt
to extend this minimum value of sensitivity to the other Gi(s),
modifications of the feedback structure are investigated.

If in the gystem of Fig. 4.2 all the feedback paths are referred

to the output, then the resulting system has the form of Fig. 4.4

where
k2 k3 kn
H g) =l +—+——"7 +,..+ —m———— 4.9)
eq( ) Gl G1G2 Gl"’Gn -1 (

The system in this form is referred to as the '"H-equivalent" system.
The transfer function Y(8)/R(8) is unchanged. The H-equivalent system
is often used as a block diagram reduction of the state-variable feed-
back system for the purpose of calculating the closed-loop transfer
function. However, the H-equivalent system here is intended as an
actual physical system; that is, the output is fed back through Heq(s),

and no other state variables are fed back, For the H-equivalent system,

SW - E'(8) - 1
G R(s) 1+ GH
eq
- 1
kz kn
1+6,G6.,...06[1l+=—+...4—7——]
172°"""n 6, Gy eesC _
1

1+ Gle...Gn + szz..:Gn +...F knGn

\)
n



R(s

Y(s)

H
eq

Figure 4.4 The H-equivalent system.

41
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Thus, the sensitivity of the H-equivalent system with respect to any
block ig the forward path is equal to the sensitivity of the state-
variable feedback system with respect to Gn(s). This 1is the "minimum
sengitivity" which was sought.

With regard to the construction of a system, the H-equivalent
configuration has both advantages and disadvantages in comparison to
the state-variable feedback system., For the H~equivalent system only the
output is actually measured. This is an advantage when measurement
of all of the state variables is difficult. However, unless the numerator
and denominator of G(s) are of the same order, the numerator of Heq(s) is
of higher order than the denominator. Then in order to realize Heq(s)
approximately, poles must be added, This problem is treated in an

example in Chapter V.

4.5 A Note on Integral Sensitivity and the Poles of the Fixed Plant

Consider again Eqs. (4.2) and (4.3) for W(s) of the state-variable
feedback system, It is assumed that the functions Gi(s) are of the form:

Ki(s + zi)

Gi(s) = (4.11)

s + pi

The factor (s + zi) is not always'present. If the functions in the

nuperator and denominator of W(s) are cleared by multiplying by

1 I 1 (s + pi)’ W(s) may be written as:

a sm -1
W(s) = P(s) o D m - 1

Qe)  m oy o
n-1

m
s + a

(4.12)

where the roots of Q(s), the characteristic polynomial, are the closed-

loop poles of the system. Similarly, if the expressions for the
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)
classical sengitivities, SG » are cleared of fractions, the sensi-
i
tivities may be written as:

N, (8)
Mot

Gy Q(s)

2 2 -1
s + cz - ls +..et co

- - (4.13)
s + b e
n-1 o

From Eqs. (4.12) and (4.13) it is seen that the denominators of the

Sg are the characteristic polynomial, which is specified by the re-
i

quired closed-loop response.

The sensitivity with respect to Gn(s) is:

n
g 181 C¥P) (4.14)
G Q(s) .

n

Recall that the integral sensitivity, SA’ depends on the magnitude of

SY. Now,
n
EETEEE S USRS Y 6.15)
“Gnl Q(s) Q(-s) )
From Eq. (4.15) it is clear that the integral sensitivity, S is the

G ’
n
same for two systems which have the same closed-loop response, but
whose open loop poles are symmetrical with respect to the jw-—axis.

Thus, one or more of the open loop poles could be located in the RHP,

and SG would remain the same. This emphasizes the fact that the
n

sensitivity function, uA(t), and therefore SA’ are defined in terms of

an incremental change in the parameter ). Clearly, for sufficiently
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large changes in the gain Kn’ a system with open-loop poles in the
RHP behaves very differently from a system with only LHP open-loop
poles.

The discussion above indicates that in addition to compen-
sating the system for the desired closed-loop response and evaluating
sensitivities, it is necessary to retain a wider view of the system

design - for example, in terms of a root locus.

4.6 Summary

From the analysis in section 4.2 it is seen that, under certain
conditions, the state-variable feedback system is less sensitive to
parameter changes as compgred to the series compensated system with the
same closed-loop transfer function W(s). However, it appears that the
minimum sensitivity attainable is restricted by the fixed plant and
by the required W(s). The H-equivalent system, or a system using an
approximation to Heq(s), might be used to extend this minimum value of
gsensitivity to all of the blocks in the forward path. Chapter V

consists of a series of examples which 1llustrate the ideas discussed here.



CHAPTER V

EXAMPLES

This chapter consists of several examples to illustrate the

sensitivity properties of systems designed by the methods discussed

in Chapter IV. In Example 1 a fixed plant 1is compensated by feeding
back all of the state variables and by the Guillemin-Truxal method.

The sensitivities of the two resulting systems are compared. The same
fixed plant is compensated with H-equivalent feedback in Example 2.,
and a system with an approximation of Heq(s) is discussed in Example 3.
In Example 4, a zero, which is not desired in W(s), is included in the
fixed plant. Sensitivity analysis is used to determine the parameters
of a cascade compensator which provides for cancellation of the zero

in the closed-loop response.

Example 1. Figure 5.1 shows the fixed plant of a control
system which 1s required to have the following closed-loop transfer

function.

W(s) = 5 80

&3 + 1482 + 48s + 80

80
(s + 10)(s2 + 4s +8)

W(s) is obtained in two ways. One system is syntehsized using state-

variable feedback, while the Guillemin~Truxal method is used to design

45
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s+5

s+l

1
8

Figure 5.1 The fixed plant of Example 1.

46

R < K3 X KZ X? El Xl = Y(s)
+Y_ 8+p, s+p, s
ks ky
j-_fJ\‘ A‘
+

S NS
Kl = 1 Py = 1 K=8
K2 =5 Py = 5 kz- 35/80

Figure 5.2 The compensated system of Example 1.
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the second system. For both systems in this example classical
sensitivities and sensitivity functions, as well as peak sensitivities
and integral sensitivities, are found in order to show the connection
between the different sensitivity measures.

For the state variable feedback system (Fig. 5.2) the sensi-
tivities with respect to the blocks in the forward path are given

by Eqs. (4.5). TFor this example the equations become:

W s3 + 1492 + 48s

G183 4 148 + 48s + 80

S

s s
_3_s(6+ 1@+
2

5
s

S S
(10 + 1)( g + > + 1)
M s>+ 1s® 413
G 3 2
2 s” 4+ 1l4s” + 48s + 80
13 s(%g + 1)
=80 2

G+DG+5+1D

W s3 + 632 + 58

3 s3 + 1482 + 48s + 80

8
1 s(s+1(G+1)

16 2

8 8 8
(10+1)(8 +2+1)

Asymptotic Bode plots for these sensitivities are shown in Fig. 5.3.
There is also in Fig. 5.3 a Bode plot of Geq(s), which is included in

order to indicate the bandwidth of the system. It may be noted that



ket

Geq 10

Figure 5.3 Gain sensitivities for the state~
variable feedback system of Example 1.
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for frequencies less than the gain crossover frequency, Sz < SG < SG .
3 2 1

The classical sensitivities with respect to the specific parameters

in the forward path are:

s =gt 2
P, G 8tP

13 sG3+ D
" 80 s s2 s
CI6 + l)Cg— +‘E + 1)
-p
Moo 3

P3 Gy 8 +p,

-1 s(s + 1)
16

2
=] S S
(lo+1)(8+2+1)

Asymptotic Bode plots for Sz and Sz are in Fig. 5.4,
2 3
The sensitivities with respect to the feedback coefficients

are given by Eqs. (4.8).



G
eq

10

Figure 5.4 Pole sensitivities for the state-
variable feedback system of Example 1.

€
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M -1
Skl i s 52 8
(16 + 1)(—§ +o+ 1)

SW YA s

k2 16 s a2 s
Got 1)(-—§+—2-+ 1)

P § s(s + 1)

k3 10 8 82 8
(—l—6+ 1)(—§+—2-+ 1)

Fig. 5.5 shows Bode plots of these functions.
If the Guillemin-~Truxal method is used to compensate the
plant, the final closed-loop system is as shown in Fig. 5.6. For

this system SW

K’ the sensitivity with regpect to any gain in the

forward path, is equal to Si for the state-variable feedback system.

Similarly, the sensitivity oé the series compensated system with respect
to the unity feedback coefficient is equal to S:
feedback system. The sensitivities of the seriei compensated system

for the state-variable

with respect to the poles of the fixed plant are:
W w ([ P
S =S |
Py K s + P,y

s(%+ 1)(%+ 1)

2 .
(—’i—o-+ 1)(5—8-+%+ (s + 1)

=3
5

-p
s = Sg [s +3 ]
Pg Py
8 s
3 s+ (E+ 1)
5 2

8 8 k) S
(10+1)(8+2+1)(5+1)
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Figure 5.5 TFeedback coefficient sensitivities for
the state-variable feedback system of Example 1.



The Bode plots for these functions are shown in Fig. 5.7.

A comparison of the Bode plots of the classical sensitivities
of the two systems shows that for all parameters, the magnitudes of
the classical sensitivities for the state-variable feedback system
are less than or equal to those for the series compensated system
for frequencies less than the gain crossover frequency.

A similar comparison may be made in terms of sensitivity
functions and integral sensitivities.

Figs. 5.8 and 5.9 show block diagrams for the generation of

gensitivity functions for both systems. Plots of the sensitivity

functions are shown in Figs. 5.10, 5.11, and 5.12, and a table listing

peak sensgitivities and integral sensitivities is in Fig. 5.18.
From these results it is clear that a reduction in sensitivity
with respect to the parameters K2' K3, Py> and P has been obtained

using the state-variable feedback method of design.

53



+ 8(s+l) (s+5

10

Y(8)

(s+6) (s+8) s (s+1) (s+5)

Figure 5.6 The system of Example 1 compensated

by the Guillemin-Truxal method.
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eq

Figure 5.7 Pole sgsensitivities for the
series compensated system of Example 1,

X
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UKl(S) ;
IS Kl
Up (s)
2 S
U (s) IS K2
-1 2
s+l IS sz
UK,(S)
3 S SK
U_ (s) 3
| = | 3 IS s
845 p3
1
- ( 16 5 1
A 16 Py
W(s +5
(s) g -;SP_’_ +Y, 8 s+l 8
-1
‘\ 2
T
[; L 30
7
Uk (s)
1S S
k2
Uk3(s)
IS Sk
3

Figure 5.9 Generation of sensitivity functions
and integral sensitivities for the state-
variable feedback system.
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(t)
uk2

Figure 5.12 The sensitivity functions for the feedback
coefficients of the state-variable feedback system.



Example 2. For the state-variable feedback system of Example 1.

the sensitivities with repect to Kl’

using H-equivalent feedback. The Heq(s) system is shown in Fig. 13.

KZ' and p, may be reduced by

From Eq. (4.10) the sensitivity of the Heq(s) system with

respect to any block in the forward path is:

where Sg is the gensitivity of the state-variable feedback system
n

with respect to Gn (n = 3). The sensitivities with repect to P,

and P are:

W W -1
G 's+1

S =5, ( )

W W
c ¢

-5 )
Py s + 5
Sz is the same as for the state-variable feedback system. The
3
sensitivity with respect to p, has been reduced, sincelsz|<lsg [,
2
where Sz 1s the sensitivity with respect to G2 for the state-~variable
2

feedback system.
The peak sensitivities and integral sensitivities for the

H-equivalent system are listed in the table of Fig. 5.18.
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= Y(s)

Figure 5.13 The H-equivalent system of Example 2.

2 1% s (%2 [1 )%
8 s+5 s+l s
43 2
1+ 30 8 + 10 s
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Example 3. In Example 2. a reduction in sensitivity was obtained
by using H-equivalent feedback. However, Heq(s) is not in a form which
is easily realizable. It is desirable to approximate Heq(s) by a trans-

fer function which is realizable by RC elements and a gain factor.

43 1 2
= + == =
Heq(s) = 1+ 5g s+ 159
8
=] + 10(s + 5.38)
In order to make the second term realizable, poles are added at s = -40

and s = =50, while preserving the low frequency gain.

200 s(s + 5.38)
(s + 40)(s + 50)

There are several factors to be considered in choosing the

Héq(s) =1+ (5.1)
approximatinn of Heq(s). The large gain of Heq(s) at high frequencies
is undesirable 1if there 1is noise at the system output. The addition

of low frequency poles to Heq(s) alleviates thils problem. However, two
other considerations make the use of high frequency poles degirable.
The poles of Héq(s), which become zeros of W(s), have less effect on
y(t) 1f they are placed at high frequencies. Secondly, the addition

of poles in the manner shown in Eq. (5.1) causes the zeros of Héq (s)
to be different from those of Heq(s). This error in zero locationms,
which also affects y(t), is smaller for high frequency poles. Thus,

a compromise must be made between the filtering of output noise and

the approximation of Heq(s). Another possiblity 1s to approximate

Heq(s) by:
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R (o) = 2000 (L + .538s + .1s%)
eq (s + 40) (s + 50)

However, with this approximation a change in the pole location or
the gain constant of Héq (s) results in a steady-state error at the
output.

One other idea in the approximate realization of Heq(s) is to
obtain a system which has zero steady-state error for a ramp input.
For such a system the velocity error constant, Kv’ is infinite. Kv
may be expressed (Truxal, 1955) as:

T o1

U

K 3= Py g=1 %
where the pj and zj are the poles and zeros of the closed-loop trans-
fer function. Since Kv is determined by the closed-loop poles and
zeros, the poles added to Heq(s) might be placed in such a way that
Kv = », Thig is a topic for further investigation.

The structure of the system with Héq(s) feedback is shown in
Fig. 5.14, and a block diagram for the generation of sensitivity func-
tions is in Fig. 5.15. The table of Fig. 5.18 lists the peak sensi-
tivities and integral sensitvities. For the parameters in the fixed
plant, the sensitivities are approximately equal to those of the Heq(s)
system. The sensitivities with respect to the parameters of Héq(s)
are reasonably small (less than SK for the state varlable feedback

1
system).
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X X X, = Y(8)
K, 3 K, 2 K, 1

- s+p3 s+p2 s

A s(s+a1)
(s+b1)(s+b2)

a § A= 200
K, = 2 a, = 5,38
b, = 40

b, = 50

Figure 5.14 The H'-equivalent system of Example 3.
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U_(s)
K IS SK
U (8)
-1 P2 S
s+l IS Py
U (s)
s+5 15 Ps
1
5 o) Y(s)+o 16 5 1
s+5 s+1 s
N+
-200s (s+5.38)
(s+40) (s+50)
. N
/
UA(S)
IS SA
Uy, (s)
—40 b
— 5440 1 18 Sbl
U, (8)
b
-50 2 S
5+50 IS b,
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Figure 5.15 Generation of sensitivity functions
and integral senstivities for the H'eq(s) system.




For the Héq(s) system the new closed-loop transfer function is

80(s + 40) (s + 50)
(s + 61.9) (8% + 29.4s + 287) (s> + 4.81s + 9.05)

W(s) =

The pole and zero locations are shown in Fig. 5.16, and a graph of
y(t) is in Fig. 5.17. It is seen that the addition of poles in the
feedback structure has altered the step response. This example demon-
strates that while a system using an approximation to Heq(s) may show
an improvement in sensitivity over a system with state-variable feed-
back, two new problems are introduced. The addition of poles to

'

Heq(s) affects the closed-loop response, and the high gain of Heq (s)

at high frequencies 1s undesirable if there 1s noise at the output.
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Example 4. Fig. 5.19 shows the block diagram of a fixed plant
for which the transfer function is

5(s + 2)
s(s + 1)(s + 5)

G (s) =
. )
The desired closed-loop transfer function is

80
(s + 10) (s + 4s + 8)

W(s) =

In order to realize W(s), the zero of the fixed plant must be cancelled,
and it is assumed that it is impossible to ingert a pole immediately
preceding this zero.

Since direct series cancellation 1s impossible, the zero
appears as a zero of W(s). Thus, W(8) is also required to have a pole
at ¢ = -2, That is,

80(s + 2)
(s + 2)(s + 10) (s> + ks + 8)

W(s) =

To accomplish this, the order of the system is increased by inserting
a series compensator as shown in Fig. 5.20, and the new state variable
X, is fed back. The parameters k2’ k3, k&’ K, and p, are then chosen

so as to realize W(s). The values of k2, k3, and K are found to be:

K = 16, k2 = 7/16, k3 = -3/4 |
To obtain the specified W(s), the values of k4 and p, must be chosen
x, (s8)

such that the transfer function —;a;y , as defined in Fig. 5.20, is:

x,(s) 16 16

z(8) "8+ P, + 16k4 s + 10




Figure 5.19 The fixed plant of Example 4.
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Figure 5.20 The closed-loop system of Example 4,
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Any values of k, and P, satisfying P, t+ l6k4 = 10 produce the required

4
pole at s = -2 in the closed loop transfer function.

Bounds on a desirable value of p, may be obtained from stability
considerations (Schultz and Melsa 1967). 1If P, = 0, the sgystem
has two open-loop poles at the origin, and the root locus, as a
function of the gain K, is in the RHP for small values of K. Another
possible choice is P, = 10, which requires k4 = 0. Since the state
variable X, is not fed back when k4 = (0, a zero of Heq(s) is lost.
Therefore, as K +», two closed-loop poles (instead of only one) approach
infinity. This is a disadvantage with regard to stability for high
gain.

An intermediate value of P, may be obtained by considering the

sensitivity of W(s) with respect to p, and k From Eq. (4.14),

4
(s + pA)(s + 5)(s + 1)s

Y
S =
G, Q(s)
Therefore,
%
Mo P
P, G, 8 *p,
—pa(s + 5)(s + s
= 5.2
Q(s) .2)
From Eq. (4.7),
M A
kA B(s)

—k4K(s + 5)(s + 1)s

- =) (5.3)




It is geen that ISW | and ISw | are proportional to |p,| and |k, |
P, k4 4 4
respectively. Usually it is desirable to decrease the sensitivity
with respect to elements in the forward path and to accept higher
sengitivities for the feedback coefficients, because the tolerances
for the ki's may be controlled. However, in this case the series
compensator 1s also selected by the designer. A possible solution

is to choose P, such that the sensitivities with respect to P, and
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k4 are equal. From Egqs. (5.2) and (5.3) this requires l6k4 = P,
We have

p, + 16k, = 10 (5.4)
Therefore,

P, = 5, k4 = 5/16

It should be noted that the sensitivities with respect to the
other parameters of the system do not depend on the values of k4 and
P,> as long as these values satisfy Eq. (5.4). This is seen from the
fact that the transfer functions used to calculate the sensitivities

for the other parameters involve P, and k4 only through the function
x,(s)
z(s)"®
A block diagram for the generation of sensitivity functions for

this example is shown in Fig. 5.21, and the results are listed below.
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Peak Integral
Parameter Sensitivity Sensitivity
Kl 0.593 0.286
K2 0.321 0.0670
K3 0.458 0.152
K 0.248 0.0424
z, 0.213 0.0354
P, ~0.148 0.0191
Py -0.415 0.132
Py -0.223 0.0366
k2 ~-0.396 0.1366
k3 0.194 0.0295
k4 -0.223 0.0366

It 1is seen that the peak and integral sensitivities with
respect to P, and k4 are equal, which follows from the equality of

their classical sensitivities., It should also be noted that SK > SK .
3 2

This occurs because the feedback coefficient k3 is negative.

It may be noted that ISz |+ 0 as p,* 0. Thus, for minimum
sensitivity with respect to p:, the best choice is P, = 0. However,
as mentioned above, this value of P, leads to instability for small
values of K. This 1llustrates the need to maintain an overall view
of the system behavior when a solution for minimum sensitivity is

being sought,



CHAPTER VI
CONCLUSIONS
In this thesis a new sensitivity measure, integral sensitivity

(S,), has been defined in terms of the sensitivity function (u, (t)).
by X

2
sA = Z uy (t) dt

where ux(t) = nggi-il, and y(t, A) is the response of the system to

A
a step input. Although the integral sensitivity contains less
information than the sensitivity function, it does, along with the
peak sensitivity (uf), provide a quantitative measure of sensitivity

in a concise form. Peak sensitivity 1is defined as:

% =
u¥ uA(T)

where T = the value of t such that lux(t)l is a maximum. Integral
sensitivity 1s a measure of the overall effect on the system step
response of a parameter variation, while the peak sensitivity is an
estimate of the maximum change in y(t) for a + 1% change in the
parameter. Part of the value of integral sensitivity 1is derived

A dw

)

from its close connection to classical sensitivity (SY =W a

by the equation

1 Ingwzl W
=5 2 83w | du

Sx
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From this relation the relative magnitudes of classical sensi-
tivities, which may be found without the use of a computer, can be
used to predict the relative magnitudes of integral sensitivities.
Furthermore, integral sensitivities can be computed for practical
cases only in a numerical fashion, while classical sensitivities can
be evaluated in terms of the literal parameters of the system. In
this way sensitivity considerations are included early in the design
process.

In Chapter IV a comparison is made between the sensitivity
properties of state-variable feedback systems and seriés compensated
systems. It is seen that, under certain conditions, the sensitivities
with repect to most of the system parameters may be expected to be
smaller for the state-variable feedback system, and that the sensi-
tivities with respect to blocks in the gtate feedback system are less
for the blocks closer to the system input., This behavior is demon-
strated by the examples of Chapter V.

The use of H-equivalent feedback is seen to be advantageous
with regard to sensitivities for parameters in the forward path.
However, in order to make the feedback transfer function realizable,
it is necessary to add poles to Heq(s). The locations of these poles
must be chogsen with attention to their effects on W(s) and the fil-.
tering of output noise. There 1s also the possibility of choosing
the poles such that the resulting system has zero steady-state error

for a ramp input. The judicious choice of these pole locations as



an integral part of the system design appears to be a subject for
future work.

The following observations seem to indicate another topic
for further research. By feeding back the state variables, a reduc-
tion in sensitivity for parameters in the forward path is obtained,
but the feedback coefficients which are introduced represent a new
source of sensitivity. Also, it was seen by an example calculation
in section 4.3 that the sensitivity value of the least sensitive
component depends entirely on the given fixed plant and the specified
closed-loop response. These considerations lead to the conjecture
that, given a fixed plant which constitutes the forward path, and a
specified closed-loop response, there may exist a law of "conservation
of sensitivity" for the system. That is, reduction of the sensitivity
with respect to certain parameters may lead to increased sensitivity
due to other parameters, and the total sensitivity is, in some sense,

a consgtant,

79



APPENDIX

For the system of Fig. 4.2, Eqs. (4.4) and (4.6) are given for

the sensitivities with respect to Gi(s) and k, respectively. The closed

i
loop transfer function W(s) is given by Eq. (4.3). These expressions
are derived here.

The system of Fig. 3.1 1s the same as that of Fig. 4,2 for the

case where Hj = k, for all j. Consider the reduced block diagram of

3

Fig. 3.2. An expression for Sz = Ei(s)/R(s) is given by Eq. (3.8).
i
Mo 1 ) 1
G1 14 GiLN M+ ki/N] 1+ GiL ["\M + ki]

Substitution for L(s), M(s) and N(s) from Eqs. (3.4), (3.5) and (3.6),

and multiplication of the numerator and denominator of Sg by the denom-
i

inator of L(s) yields:

oo 14 kg 16y p1ee Gy + kg nGyeeaB + oo + kG
Gy T L ¥k G .G F ... +KG + [KG .-G+ K)G,...G +
+
e &0 + kiGi LR 3 .Gn]
i 1+ 0y 164106 + Ky 56hnee G + on + Kk G
1+H%”G F,0pee s * ooo ¥ kG
n n
) ™
i1t Ki41 =1ty G
n n
+ ) k, 1 ¢
3=1 2%

This is Eq. (4.4). W(s) may be found from Sg .
n
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w(ey = Y(s) E (s)

W
R(s) - R(m) 18 G(8) =8 6.
_ Gl...Gn
1+ kG iG + KyGyueiG + ov + K G_
n
m
o di=1 %
n n
1+ ) k, Gj
=1 jzz

This 1is Eq. (4.3).

From Eq. (3.10) and with reference to Fig. (3.2),

SW - Digsz - Kk 1 Y(s)
ki R(s) 1 N(s) R(s)
-k
i
W(s)
G Gye oGy _;

-k,G,G N
n

- 174°1+1
1+%k6G,...6 +k.G,... + ... +k G
171 n 2 n nn

2

This is Eq. (4.6).
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